高斯光束的参数及其测量方法

杨之昌

(复旦大学光学系)

Parameters of Gaussian beam and their measuring methods

Yang Zhichang

(Department of Optics, Fudan University)

Laser beam parameters, basic principles in the measurement and the measuring methods of these parameters are discussed as a He-Ne laser operates in TEM_{00} mode. These methods are also applicable for other lasers of CW output with small divergence angle.

气体激光器中的 He-Ne 激光器 具有制作方便、成本低、直观等优点,已经应用在导向、准直、测距、通讯、干涉测试技术、全息照相术、医疗、教学等方面。

我们单位也曾试制过 He-Ne 激光管,并 在工作中对激光管的光束参数进行 过测量。 下面向大家介绍一下我们在这方面的 经验, 供大家在生产、实验、教学上作参考。

一、高斯光束及其参数

1. TEM₀₀ 模光斑的光强分布是符合高 斯分布的

目前生产的 He-Ne 激光器输出的 模式 大部分是单模 (即 TEM₀₀)。这种激光束正 入射在一块白色屏幕上,所形成的光斑的光 强分布是符合高斯分布的,所以又可以将这 种激光束称为高斯光束。

2. 高斯光束的几个基本参数

(1) 光班半径 w(z)

高斯光束的光斑半径是指光斑上的光强

减弱到最大光强 I_0 (中心亮点)的 $\frac{1}{e^2} = e^{-2} \approx$ 0.135 时的圆环半径称为激光束的光斑半 径,用w来表示。

(2) 腰 w₀

高斯光束在它的传播方向上 (z 轴) 是以 某处为中心对称分布的。我们规定该处为 z 轴的原点,这样 w(-z) = w(z), z 越大, w(z)越大, $w(0) = w_0$ 为最小, w_0 就称为高斯光束 的腰。

由理论证明,高斯光束在均匀介质中传 播时,光斑半径的变化规律由下式决定:

$$w(z)^{2} = w_{0}^{2} \left[1 + \left(\frac{\lambda z}{\pi w_{0}^{2}} \right)^{2} \right]$$
(1)

(1)式可改写成

$$\frac{w(z)^2}{w_0^2} - \frac{z^2}{\left(\frac{\pi w_0^2}{\lambda}\right)^2} = 1$$
(2)

上式的物理意义是, 在通过 z 轴的任一 平面内, 高斯光束的光斑的光强衰减到极大

收稿日期: 1979年1月12日。

光强的 $\frac{1}{a^2}$ 的轨迹是一组双曲线,见图1所示。

(3) 远场发散角 θ(∞)

He-Ne 激光束的特性之一就 是 方 向 性 好, 在实际应用中用发散度来衡量。

$$\theta(z) = \frac{dw(z)}{dz} \tag{3}$$

把(1)式代入上式得:

$$\theta(z) = \frac{\frac{\lambda}{\pi w_0^2}}{\left[1 + \left(\frac{\pi w_0^2}{\lambda z}\right)^2\right]^{\frac{1}{2}}}$$
(4)

当 $z\gg\frac{\pi w_0^2}{\lambda}$ 时,

 $\lim_{z \to \infty} \theta(z) = \theta(\infty) = 常数 = \frac{\lambda}{\pi w_0}$ (5) $\theta(\infty)$ 就称为高斯光束的远场发散角。

二、TEM₀₀模的鉴定

基本原理

我们假定当激光束正入射到白色屏幕上 所形成的光斑的光强分布是高斯分布,在一 维情况下可以用下式表示:

$$I = I_0 e^{-\frac{2x^2}{w^2}}$$

上式的二边取常用对数

$$\lg I = -\frac{2\lg e}{w^2} x^2 + \lg I_{\circ} \tag{6}$$

从(6)式看出,只要用实验装置测出光斑 的光强分布($I \sim w$ 曲线)并记录下来,然后再 作 $\lg I \sim w^2$ 曲线,若是线性关系,那末就可以 判定光斑的光强分布是严格的高斯分布。

2. 实验装置

我们对模式鉴定采用的是一维的探测器 扫描装置,如图2所示。

其中可调节反射镜应用 550 平行光管的 附件,放在一定距离 z 的 He-Ne 激光器输出 的激光束经反射镜反射正入射 到光探测器 上。光探测器是用 10×20 毫米²的 硅光电 池,硅光电池放在圆形的暗盒中,暗盒的盖子 上开一个针孔,针孔的大小在 20~40 丝之 间,光探测器用同步马达带动,可以作一维扫 描。光探测器在扫描中,激光束透过针孔入 射到硅光电池上产生光生电动势信号经放大 器放大,然后用自动记录仪 XWC-101 记录 下来。

但在做实验时一定要注意以下事项:

① 由于记录仪的走纸速度 V_L 和探测器的扫描速度 V_x 不一样,所以记录下来的距离 L 和探测器的实际扫描的距离 $\infty 关系如下: \alpha = \frac{V_x}{V_L}L$,不注意这一点,将使实验的结果产生很大的误差。

② 针孔的半径 r 的大小要选择适当,由 实验证明以半径 r<0.2w 为宜。</p>

• 40 •

③ 光探测器在扫描时,探测器上的针孔 尽量扫经光斑中心。

图 3 是当 z=8 米时所记录的光强分布 图,并把图中曲线上得到的数据列在表 1 中, 把表中 lg I 和 x² 的数据作直线得图 4。

<i>I</i> .	lg I	L (毫米)	x (毫米)	<i>x</i> ² (毫米 ²)
5.0	0.699	18.4	5.23	27.31
10.0	1.000	14.0	3.98	15.81
15.0	1.176	10.6	3.01	9.06
20.0	1.301	7.0	1.99	3.95
24.8	1.395	· 0 ·	0	0

 $x = \frac{V_m}{V_m} L = 0.284 L (毫米)$

表 1

(斜率 a=-0.0254)

从上图得出 $\lg I \sim x^2$ 的关系是线性关系。所以我们判定激光束的光斑光强分布是高斯分布(即 TEM₀₀ 模)。

三、高斯光束光斑半径 *w*(z)的测量

激光束的光斑半径 w(z) 的测量,一个重要的前提是激光器输出必须是 TEM₀₀ 模。光 斑半径的测量又是高斯光束 参数 测量的基础。下面介绍几种常用的光斑 半径 测量 方法。

1. 探测器扫描法

(1)用第二部分讲叙的测量装置,先通 过探测器扫描后记录下光斑的光强分布图, 再根据光斑半径的定义,可以直接求得光斑 半径 w(z)。

例如,从图 3 中, Io=248(相对值),

 $I(x_1) = 0.135I_0 = 0.135 \times 248 = 33.5$ 再从 $I \sim x$ 曲线上查 得 $z = 8 \times 1$, w = 5.78毫米。

(2)利用 lg I-x² 曲线 求 得 光 斑 半 径
 w(z)

根据(6)式, lg *I* 与 *x*² 是线性关系, 那么 我们可以从图 4 中求出直线斜率 *α*, 而

$$\alpha = -\frac{2 \lg e}{w}, \quad \text{M} \quad w = \sqrt{-\frac{2 \lg e}{\alpha}} \circ$$

例如 *α*=-0.0254, 求得激光束在 8 米 处的光斑半径为 5.85 毫米。

下面是一支激光器在不同距离 z 处的测量结果,整理在表 2 中,探测器针孔 r=0.24 毫米。

表 2

离激光器的 距 离 <i>2</i> (米)	光斑定义得出 <i>w(s)</i> (毫米)	作 图 法 <i>w(z)</i> (毫米)	估计值 <i>w(z)</i> (毫米)
8.00	5.78	5.85	5.79
6.00	4.32	4.36	4.34
5.50	3.98	3.99	3.98
5.00	3.61	3.63	3.62
4.50	3.24	3.26	3.26
4.00	2.92	2.93	2.89
3.50	2.58	2.63	2.55
3.00	2.22	2.26	2.19
2.50	1.85		1.83
2.00	1.57		1.47
1.50	1.16		1.12
1.00	0.91		0.77

注: 估计值由公式(6)及有关常数求得

2. 圆孔法

圆孔法是将一只半径=a的圆孔光阑放 到激光光斑待测的位置上,通过二维的调节 装置使圆孔的中心正好与光斑中心重合,如 图 5 所示。

用功率计(上海灯原电器厂出品)测出透 过圆孔的光能 *P*(*a*)(测量时要调节圆孔的位置,使功率指示读数为最大)。

• 41 •

然后再测量没有光阑的激光总光能 *P*(∞),通过下面的计算即可求出该处的光 斑大小。

原理:
$$P(a) = \int_{0}^{2\pi} d\theta \int_{0}^{a} e^{-\frac{2r^{2}}{w^{2}}} r dr$$
$$= \pi \int_{0}^{a} e^{-\frac{2r^{2}}{w^{2}}} dr^{2}$$
$$\Leftrightarrow \qquad t = \frac{2r^{2}}{w^{2}}, \quad dt = \frac{2dr^{2}}{w^{2}}$$
$$\therefore \quad P(a) = \frac{\pi w^{2}}{2} \int_{0}^{\frac{2a^{2}}{w^{2}}} e^{-t} dt$$
$$= -\frac{\pi w^{2}}{2} [e^{-\frac{2a^{2}}{w^{2}}} - 1]$$
$$\Rightarrow a \to \infty, \quad \& \bot \texttt{I} \texttt{I} \texttt{H} \texttt{I} P(\infty) = \frac{\pi}{2} w^{2}$$

$$\frac{P(a)}{P(\infty)} = 1 - e^{-\frac{2a^{2}}{w^{4}}}$$

$$w = a \sqrt{\frac{2}{\ln\left[\frac{1}{1 - \frac{P(a)}{P(\infty)}}\right]}}$$
(7)

例如,我们利用 $a_1=0.707$ 毫米, $a_2=1.060$ 毫米的圆孔作测量,测量结果整理在表3中。

表 3

测量点离 激光器平	圆 孔 a ₁ =0.7	半径 107 (毫米)	圆 孔 a ₂ =1.06	半 径 50(毫米)	估计值
面镜的距 离 2 (米)	$\frac{P(a)}{P(\infty)}$	w (毫米)	$\frac{P(a)}{P(\infty)}$	w (毫米)	(毫米)
2.50			0.505	1.80	1.83
2.00			0.616	1.54	1.47
1.52	0.592	1.11			1.14
1.50			0.854	1.20	1.12
1.14	0.767	0.88			0.87
0.76	0.933	0.59			0.62

测量应注意:

(1) 要使圆孔的中心与光斑中心重合, 一定要有二维的调节装置。

(2) 此方法要求激光器输出功率比较稳 定。

(3) 测量相对误差在 5~10%。

3. 狭缝法

令

狭缝法是将宽度为 2a 的狭缝, 放到激光 光斑待测的位置上, 通过一维的调节装置使 光缝的中心线正好通过光斑中心, 若用功率 计测量, 在这种情况下可测得极大光能 *P(a)*。然后迅速移开狭缝,用功率计测量激 光的总光能 *P(∞)*。通过以下计算可以求出 光斑半径:

$$P(a) = \int_{-\infty}^{\infty} e^{-\frac{2y^{2}}{w^{2}}} dy \int_{-a}^{a} e^{-\frac{2x^{2}}{w^{2}}} dx$$
$$= w\sqrt{\frac{\pi}{2}} \int_{-a}^{a} e^{-\frac{2x^{2}}{w^{2}}} dx$$
$$\therefore P(\infty) = \frac{\pi}{2} w^{2}$$
$$\therefore \frac{P(a)}{P(\infty)} = \sqrt{\frac{2}{\pi}} \frac{1}{w} \int_{-a}^{a} e^{-\frac{2x^{2}}{w^{2}}} dx$$
$$\frac{\sqrt{2}x}{w} = t, \, dx = \frac{w}{\sqrt{2}} dt$$
$$\frac{P(a)}{P(\infty)} = \frac{1}{\sqrt{\pi}} \int_{-\frac{\sqrt{2}a}{w}}^{\frac{\sqrt{2}a}{w}} e^{-t^{2}} dt$$
$$= \frac{2}{\sqrt{\pi}} \int_{0}^{\frac{\sqrt{2}a}{w}} e^{-t^{2}} dt$$

(8)

我们只要测出 $\frac{P(a)}{P(\infty)}$ 就可以从几率积 分表中,找到 $\frac{\sqrt{2}a}{w}$ 的数值。例如,狭缝的宽 度 2a=1.00毫米,测量离激光器平面镜1 米处的光斑半径,用功率计测量, $\frac{P(a)}{P(\infty)}$ =0.806。代入(8)式,再从几率积分表中查 得:

$$\frac{\sqrt{2}}{w}a=0.919,$$

$$w = \frac{\sqrt{2}a}{0.919} = 0.77$$
 毫米

则

我们用狭缝法测量 He-Ne 激光束在 不同距离的光斑半径 w(z),并把它们整理在 表4中。实验使用的光缝是可变狭缝,精确 度=0.01 毫米。注意事项与圆孔法相同。

g (米)	2a (毫米)	w(z)(毫米)
0.02	0.30	0.28
0.10	0.30	0.32
0.20	0.30	0.33
0.40	0.50	0.42
0.60	0.60	0.54
0.80	1.00	0.67
1.00	1.00	0.77
د ها از از این میکند. ب		

表 4

四、小 结

要测量 He-Ne 激光器输出的光束参数, 首先要判定输出激光束 是 否 是 属 于 TEM₀₀ 模,只有在是的情况下,才能肯定激光束是高 斯光束,才能用本文所介绍的方法来测量不 同位置 *z* 处的光斑半径。

例如,测量腔长为250毫米左右的 He-Ne激光器的输出束的参数,提出:

z>2 $%$	用探测	器扫	描法	
3 *> z > 0.5	米	用圆	孔法	
$2 st\!>\!\!z\!\!>\!\!0$		用狭	缝法	•
动物测试具的外田	あて田ナ	ŧΚ	н і н	=

现将测量的结果整理在表 5 中。表中估 计值是用 w₀=0.274 毫米以及公式(1) 计算

辰	5	•

。 (米)	测量方法	w(z) (毫米)		估计值 (毫米)
0.02	狭缝法	0.28 ± 0.01	2a=0.30	0.28
0.10	狭缝法	$0.32 {\pm} 0.01$	2a=0.30	0.28
0.20	狭 缝 法	0.33 ± 0.01	2a=0.30	0.31
0.40	狭缝法	$0.42 {\pm} 0.02$	2a=0.50	0.40
0.60	狭 缝 法	$0.54 {\pm} 0.03$	2a=0.60	0.52
0.80	狭 缝 法	0.67 ± 0.03	2a = 1.00	0.64
1.00	狭缝法	0.77 ± 0.04	2a=1.00	0.77
1.50	圆孔法	1.20 ± 0.06	a=1.060	1.12
2.00	圆孔法	$1.54{\pm}0.08$	a=1.060	1.47
2.50	圆孔法	1.80 ± 0.09	a=1.060	1.83
3.00	探测器扫描法	2.26 ± 0.05	h	2.19
3.50	探测器扫描法	$2.63 {\pm} 0.05$		2.55
4.00	探测器扫描法	$2.93 {\pm} 0.06$	AT ZI	2.89
4.50	探测器扫描法	$3.26 {\pm} 0.06$	17T1L	3.26
5.00	探测器扫描法	$3.63 {\pm} 0.07$	241=0.48 言业	3.62
5.50	探测器扫描法	3.99 ± 0.08	電不	3.98
6.00	探测器扫描法	$4.36 {\pm} 0.09$		4.34
8.00	探测器扫描法	5.85 ± 0.10	J.,	5.79

得到的。

若把测量的结果作 w(z)~z 的曲线,如 图 7 所示。 图中实线表示估计值,"+"表示 测量点。

在测量精度要求不高时(10%),只要是 真正的 TEM₀₀ 模,则所测得的 w₀、w 值与理 论计算(根据腔参数)的结果是一致的。

参考文献

[1] J. A. Arnaud; Appl. Opt., 1971, 10, No. 12, 2775.

- [2] Y. Suzaki; Appl. Opt., 1975, 14, No. 12, 2809.
- [3] Y. Suzaki; Appl. Opt., 1977, 16, No 6, 1481.

• 43 •